III- Le Gravity Turn
Comme son nom l’indique, ce profil d’ascension exploite la gravité pour courber l’ascension d’une fusée, naturellement, sans qu’aucun contrôle ne soit nécessaire… En théorie. L’idée principale, c’est de donner une petite impulsion d’angle, peu après le décollage, en inclinant la fusée de quelques degrés : de la sorte, l’édifice se trouve en léger déséquilibre en partant d’un côté, décalant le vecteur prograde (Lexique) de l’ascension verticale pure : à partir de là, la gravité joue son rôle et tente de rappeler la fusée au sol, abaissant progressivement ce même vecteur prograde vers l’horizon… Sauf qu’entre temps, la fusée continue de grimper, tout l’enjeu devient donc de paramétrer le décollage pour qu’au moment où le vecteur prograde atteigne « naturellement » l’horizon, la fusée soit pratiquement à l’altitude et la vitesse orbitale ciblée !
Tout un programme ! Cela va trop vite ? C’est normal, le tout est expliqué au travers d’un cas pratique, un peu plus bas, pas de panique 😉 Mais il reste nécessaire de comprendre le « pourquoi du comment » pour bien saisir tout l’enjeu et l’apport du Gravity Turn.
Reprenons : il nous faut donner à notre fusée de l’altitude, et de la vitesse horizontale. On peut aisément comprendre que les deux se doivent d’être menés conjointement plutôt que séquentiellement, et cela peut assez simplement être appréhendé par géométrie, entre autre :
La distance parcourue par la fusée le long de sa trajectoire d’ascension est inférieure lors d’un Gravity Turn que lors d’une ascension verticale brute puis un burn horizontal. Cela peut se ressentir comme l’hypoténuse d’un triangle, ou un problème de composition de vecteurs : pour traverser une place carrée, il est plus rapide d’emprunter la diagonale plutôt que d’aller d’abord vers le haut, puis vers la droite, n’est-ce pas ? Eh bien là, c’est pareil 🙂
Mais le Gravity Turn va bien au-delà d’un simple raccourci : nous avons introduit qu’il peut normalement se passer de contrôle et si ce n’est pas tout souhaitable en pratique, cela reste vrai théoriquement. Il est de fait envisageable dans KSP de réaliser une fusée dépourvue de roue à réaction, de tuyère orientable ou d’ailerons, si si. Avec le gain que cela représente en matière de masse et / ou d’impact aérodynamique !
On peut distinguer trois grands facteurs responsables de pertes pendant l’ascension, le Gravity Turn permet d’en limiter les effets négatifs :
Atmospheric Drag : les frottements atmosphériques font perdre à la fusée une part de son énergie, dépensée à lutter contre l’atmosphère, qui peut former une épaisse barrière : les frottements sont d’autant plus important que l’atmosphère est dense et que la vitesse est élevée, d’où l’importance d’avoir une vitesse qui augmente au fil de la raréfaction de l’air environnant. La méthode du Gravity Turn est celle qui limite le plus cet impact, puisqu’elle consiste à exposer le profil minimal de la fusée à tout instant, en « perçant » l’air de front. Tout comme votre main qui perce l’air lorsque vous la sortez par la fenêtre par nostalgie sur une belle route nationale à 90 80 km/h, le tranchant de la main face au flux d’air, plutôt que de présenter votre paume !
Steering Losses : difficile à traduire, ces « pertes par désaxe » résultent du fait que l’énergie cinétique augmente d’autant plus vite que l’on fournit une poussée dans le sens du mouvement : si vous allez à 50 m/s sur un axe X, vous gagnerez plus d’énergie totale en fournissant une poussée dans la même direction et le même sens, qu’en utilisant la même « énergie » de poussée sur un autre axe Y perpendiculaire par exemple, simple affaire de mathématique et de la célèbre formule Ec = 0.5mv². La méthode du Gravity Turn est celle qui réduit le plus ces pertes puisqu’il n’y a virtuellement pas de désaxe, la fusée pousse continuellement dans son vecteur prograde, c’est-à-dire dans la direction dans laquelle elle évoluait l’instant d’avant.
Gravity Losses : les pertes par gravité représentent la résistance d’une masse à s’élever et de la nécessité de devoir pousser contre le sol pour gagner en altitude : la composante verticale est inutile dans le cadre d’une mise en orbite, on aimerait pouvoir s’en passer, mais il faut pouvoir dépasser le relief et l’atmosphère, et se donner le temps d’accélérer à l’horizontale. Pour comprendre ce phénomène qui est la plus grande source de perte lors d’un décollage, il faut prendre un exemple simple et concret. Imaginez une fusée dont le rapport Poussée / Poids (Thrust to Weight Ratio = TWR) est de 1.05, c’est-à-dire très faible, tout juste de quoi s’élever avec une lenteur extrême. Cette fusée a une minute de carburant, et en s’élevant verticalement elle ne grimpe que d’une malheureuse centaine de mètres avant de retomber lourdement sur le pas de tir : elle est exactement revenue d’où elle est partie, le « travail effectif », c’est-à-dire ce qui ressort de la dépense d’énergie considérable que représente une minute de burn, est nulle, aucune distance parcourue. Et le pas de tir morfle bien au passage ^^
A l’inverse, si la même fusée avec la même réserve de carburant, s’oriente cette fois de 5° vers l’océan au décollage, elle perd une partie de son vecteur vertical et grimpe encore moins vite, encore moins haut, mais… Mais sa vitesse horizontale ne cesse de croitre, et lors de l’extinction des propulseurs, plusieurs kilomètres ont été parcourus : le travail effectif que l’on peut constater est non nul, l’immense énergie consommée a permis le déplacement de nombreuses tonnes à une distance significative. Les Gravity Losses caractérisent donc simplement le fait qu’à tout instant, une fusée doit compenser son propre poids avant de fournir un travail effectif, et une poussée verticale se trouve « consommée » par la gravité, continuellement, à l’inverse d’une poussée désaxée dont la composante non-verticale sera conservée (hors frottement bien sûr) ! La méthode du Gravity Turn va permettre de progressivement passer du tout vertical au tout horizontal, car il reste tout de même nécessaire de grimper afin de s’extraire de l’atmosphère et rejoindre une orbite stable, sans frottement résiduel.
Parlons-en, d’aérodynamique, car à ce sujet aussi le Gravity Turn s’inscrit comme ascension optimale : cette manœuvre permet tout simplement de présenter le profil minimal de la fusée à tout instant et ainsi de réduire autant que possible les effets de trainées ! Et si le Gravity Turn s’appuie sur la gravité pour abaisser le vecteur prograde, il demeure néanmoins nécessaire que le nez de la fusée soit régit par quelque chose… Et ce quelque chose, c’est l’atmosphère : les frottements vont naturellement guider la fusée dans son chemin de moindre résistance, à la manière d’une flèche, si bien que tout au long de l’ascension, un lanceur bien conçu opposera son profil le plus favorable au flux d’air de manière naturelle, sans avoir besoin de contrôle. Cela peut se comprendre de la manière suivante :
On peut constater sur cette image que la fusée vient d’initier son décalage d’angle, et que son nez est désaxé par rapport au vecteur prograde, sur la NavBall. De fait cela signifie qu’à cet instant, elle ne pointe pas exactement dans la direction de son mouvement, elle « glisse » légèrement et se trouve donc en déséquilibre aérodynamique. Une fusée bien conçue retrouvera naturellement son chemin sans qu’il ne soit nécessaire de faire quoi que ce soit et nous allons voir comment grâce aux flèches bleues qui symbolisent l’effet de portance des pièces (vous pouvez retrouver cette option d’affichage en appuyant sur [F12])
Il faut se dire que même si cela ne ressemble pas à une aile, chaque part a un petit effet de portance qui existe également dans le monde réel (phénomène de « corps portant »). De fait, la pression aérodynamique symbolisée par les vecteurs bleus, montre que le nez de la fusée veut aller vers la gauche de l’image… Problème, le bas de la fusée aussi, veut aller vers la gauche ! Or lorsqu’un édifice tourne sur lui-même, il le fait autour de son centre de masse, qui se trouve ici à peu près au milieu du lanceur (point orange). Pour savoir dans quel sens la fusée va tourner sous l’effet de l’atmosphère, il faut additionner les vecteurs bleus de part et d’autre du centre de masse : on arrive à un bilan plus élevé en bas, là où la fusée est plus large notamment grâce à ses deux boosters qui génèrent de la portance.
C’est donc la partie basse qui basculera un peu vers la gauche, amenant tout naturellement le haut à pivoter vers la droite, et que remarque-t-on ? C’est ce qui va permettre au nez de la fusée de retourner vers le vecteur prograde, dans son mouvement ! Pour respecter cet équilibre, il faut donc que la portance soit supérieure en partie basse, c’est-à-dire que le centre de portance soit en arrière du centre de masse. Comme pour un avion !
Il faut appréhender cela comme « l’effet flèche » : une flèche évolue en permanence dans son prograde, c’est-à-dire la pointe dans le vecteur vitesse, à tout instant. Or que constate-t-on ? La flèche à un centre de portance très en arrière, le plus possible en fait, grâce à ses petites ailettes tout en fin de queue et un centre de masse très en avant, avec sa pointe en métal. Pour comprendre, rien de mieux que l’exemple d’un certain M. Citroën qui expliquait qu’il est nettement plus simple de tracer une ligne blanche bien droite sur un terrain de tennis en tirant le chariot plutôt qu’en le poussant. Faite l’expérience avec une brouette, ou tentez d’imaginer ! Même chose pour le camion qui tire sa remorque sans assistance : cette dernière suit simplement et gentiment la cabine. Mais lors d’une marche arrière, les choses se compliquent… A peine un tout petit décalage dans l’alignement, et la remorque s’écarte de la ligne droite et il devient bien difficile de la récupérer, autrement que par des grandes manœuvres.
Le centre de portance en arrière du centre de masse (= point de rotation, pour rappel), vient un peu jouer le rôle de la remorque, de son articulation : si elle est en arrière, elle « stabilise », elle suit simplement le flux d’air et se place au mieux, à l’équilibre de pression, comme nous avons pu le constater avec l’image qui précède. A l’inverse si ce centre de portance se trouve en avant du centre de masse, c’est la catastrophe, cela signifie que la fusée peut « prendre l’air » et être déviée au moindre déséquilibre. Un peu comme votre main par la fenêtre de la voiture, sur l’autoroute ^^ Pensez flèche, pensez « centre de portance toujours en arrière ! » Sachez toutefois qu’une trajectoire de Gravity Turn qui serait bien exécutée, et avec une fusée disposant d’un peu de contrôle (par ses tuyères orientables notamment), peut se permettre d’être aérodynamiquement instable, tant qu’elle ne dévie pas de plus de quelques degrés de son prograde 🙂
C’est ce mécanisme d’autorégulation qui permet théoriquement à un lanceur de se passer de tout contrôle pour mener à bien un Gravity Turn… Il faut toutefois prendre en considération qu’il est nécessaire d’initier le décalage d’angle au tout début, mais également que l’atmosphère se raréfiant avec l’altitude, le maintien du nez dans le prograde ne pourra plus être passif et qu’il faudra l’assister activement. En pratique on conserve donc le minimum, à savoir le plus souvent une tuyère orientable, généralement bien suffisante : certains propulseurs disposent d’une fonction « Gimbal » ou « Cardan », un mécanisme ingénieux qui dirige le flux des gaz sortant afin de garantir un couple mécanique permettant le contrôle de la trajectoire.