[KSP] Suivez l’Guide n°3 : mise en orbite et Gravity Turn !

Follow The Guide

III- Le Gravity Turn

3-Gif-GT-parfait

Comme son nom l’indique, ce profil d’ascension exploite la gravité pour courber l’ascension d’une fusée, naturellement, sans qu’aucun contrôle ne soit nécessaire… En théorie. L’idée principale, c’est de donner une petite impulsion d’angle, peu après le décollage, en inclinant la fusée de quelques degrés : de la sorte, l’édifice se trouve en léger déséquilibre en partant d’un côté, décalant le vecteur prograde (Lexique) de l’ascension verticale pure : à partir de là, la gravité joue son rôle et tente de rappeler la fusée au sol, abaissant progressivement ce même vecteur prograde vers l’horizon… Sauf qu’entre temps, la fusée continue de grimper, tout l’enjeu devient donc de paramétrer le décollage pour qu’au moment où le vecteur prograde atteigne « naturellement » l’horizon, la fusée soit pratiquement à l’altitude et la vitesse orbitale ciblée !

Tout un programme ! Cela va trop vite ? C’est normal, le tout est expliqué au travers d’un cas pratique, un peu plus bas, pas de panique 😉 Mais il reste nécessaire de comprendre le « pourquoi du comment » pour bien saisir tout l’enjeu et l’apport du Gravity Turn.

Reprenons : il nous faut donner à notre fusée de l’altitude, et de la vitesse horizontale. On peut aisément comprendre que les deux se doivent d’être menés conjointement plutôt que séquentiellement, et cela peut assez simplement être appréhendé par géométrie, entre autre :

3-Vecteurs-wikipedia-1

La distance parcourue par la fusée le long de sa trajectoire d’ascension est inférieure lors d’un Gravity Turn que lors d’une ascension verticale brute puis un burn horizontal. Cela peut se ressentir comme l’hypoténuse d’un triangle, ou un problème de composition de vecteurs : pour traverser une place carrée, il est plus rapide d’emprunter la diagonale plutôt que d’aller d’abord vers le haut, puis vers la droite, n’est-ce pas ? Eh bien là, c’est pareil 🙂

Mais le Gravity Turn va bien au-delà d’un simple raccourci : nous avons introduit qu’il peut normalement se passer de contrôle et si ce n’est pas tout souhaitable en pratique, cela reste vrai théoriquement. Il est de fait envisageable dans KSP de réaliser une fusée dépourvue de roue à réaction, de tuyère orientable ou d’ailerons, si si. Avec le gain que cela représente en matière de masse et / ou d’impact aérodynamique !

Les 3 Sources de gain (la 2ème va vous étonner)Show

Parlons-en, d’aérodynamique, car à ce sujet aussi le Gravity Turn s’inscrit comme ascension optimale : cette manœuvre permet tout simplement de présenter le profil minimal de la fusée à tout instant et ainsi de réduire autant que possible les effets de trainées ! Et si le Gravity Turn s’appuie sur la gravité pour abaisser le vecteur prograde, il demeure néanmoins nécessaire que le nez de la fusée soit régit par quelque chose… Et ce quelque chose, c’est l’atmosphère : les frottements vont naturellement guider la fusée dans son chemin de moindre résistance, à la manière d’une flèche, si bien que tout au long de l’ascension, un lanceur bien conçu opposera son profil le plus favorable au flux d’air de manière naturelle, sans avoir besoin de contrôle. Cela peut se comprendre de la manière suivante :

On peut constater sur cette image que la fusée vient d’initier son décalage d’angle, et que son nez est désaxé par rapport au vecteur prograde, sur la NavBall. De fait cela signifie qu’à cet instant, elle ne pointe pas exactement dans la direction de son mouvement, elle « glisse » légèrement et se trouve donc en déséquilibre aérodynamique. Une fusée bien conçue retrouvera naturellement son chemin sans qu’il ne soit nécessaire de faire quoi que ce soit et nous allons voir comment grâce aux flèches bleues qui symbolisent l’effet de portance des pièces (vous pouvez retrouver cette option d’affichage en appuyant sur [F12])

Il faut se dire que même si cela ne ressemble pas à une aile, chaque part a un petit effet de portance qui existe également dans le monde réel (phénomène de « corps portant »). De fait, la pression aérodynamique symbolisée par les vecteurs bleus, montre que le nez de la fusée veut aller vers la gauche de l’image… Problème, le bas de la fusée aussi, veut aller vers la gauche ! Or lorsqu’un édifice tourne sur lui-même, il le fait autour de son centre de masse, qui se trouve ici à peu près au milieu du lanceur (point orange). Pour savoir dans quel sens la fusée va tourner sous l’effet de l’atmosphère, il faut additionner les vecteurs bleus de part et d’autre du centre de masse : on arrive à un bilan plus élevé en bas, là où la fusée est plus large notamment grâce à ses deux boosters qui génèrent de la portance.

C’est donc la partie basse qui basculera un peu vers la gauche, amenant tout naturellement le haut à pivoter vers la droite, et que remarque-t-on ? C’est ce qui va permettre au nez de la fusée de retourner vers le vecteur prograde, dans son mouvement ! Pour respecter cet équilibre, il faut donc que la portance soit supérieure en partie basse, c’est-à-dire que le centre de portance soit en arrière du centre de masse. Comme pour un avion !

L’Effet FlècheShow

C’est ce mécanisme d’autorégulation qui permet théoriquement à un lanceur de se passer de tout contrôle pour mener à bien un Gravity Turn… Il faut toutefois prendre en considération qu’il est nécessaire d’initier le décalage d’angle au tout début, mais également que l’atmosphère se raréfiant avec l’altitude, le maintien du nez dans le prograde ne pourra plus être passif et qu’il faudra l’assister activement. En pratique on conserve donc le minimum, à savoir le plus souvent une tuyère orientable, généralement bien suffisante : certains propulseurs disposent d’une fonction « Gimbal » ou « Cardan », un mécanisme ingénieux qui dirige le flux des gaz sortant afin de garantir un couple mécanique permettant le contrôle de la trajectoire.

Pages : 1 2 3 4 5 6

Avatar de Dadkitess